Type Theory in Type Theory using Quotient Inductive Types
Link to the original paper (which can also be found in related papers).
Here's a self-contained full definition.
Prelude
prim I
prim Path
prim coe
variable A B : Type
def infix = (a b : A) : Type ⇒ Path (\i ⇒ A) a b
def refl {a : A} : a = a ⇒ \i ⇒ a
def pmap (f : A → B) {a b : A} (p : a = b) : f a = f b ⇒ \i ⇒ f (p i)
// Copied from Carlo Angiuli's thesis
def transport {a b : A} (B : A → Type) (p : a = b) (x : B a) : B b
⇒ coe 0 1 (\y ⇒ B (p y)) x
Context
open inductive Con : Type
| •
| infix ▷ (Γ : Con) (Ty Γ)
An instance of the type Con
corresponds to the in the judgment , and these constructors correspond (on-the-nose) to:
It uses the judgment , which is defined below.
Types
open inductive Ty (Γ : Con) : Type
| U
| Π (A : Ty Γ) (B : Ty (Γ ▷ A))
| El (A : Tm Γ U)
| Subst {Δ : Con} (Ty Δ) (s : Γ << Δ)
| SubId {A : Ty Γ} : Subst A (id refl) = A
| SubAss {Δ Θ : Con} {A : Ty Θ} {θ : Γ << Δ} {δ : Δ << Θ}
: Subst (Subst A δ) θ = Subst A (δ ∘ θ)
| SubU {Δ : Con} (δ : Γ << Δ) : Subst U δ = U
| SubEl {Δ : Con} {δ : Γ << Δ} {a : Tm Δ U}
: Subst (El a) δ = El (transport (Tm _) (SubU δ) (sub a))
| SubΠ {Δ : Con} (σ : Γ << Δ) {A : Ty Δ} {B : Ty (Δ ▷ A)}
: Subst (Π A B) σ = Π (Subst A σ) (Subst B (ext σ A))
The ext
operator corresponds to the ↑ operator in the paper:
variable Γ Δ : Con
def ext (δ : Γ << Δ) (A : Ty Δ) : Γ ▷ Subst A δ << Δ ▷ A ⇒
δ ∘ π₁ (id refl) ∷ transport (Tm _) SubAss (π₂ (id refl))
An instance of the type Ty Γ
corresponds to the in the judgment . The constructor U
corresponds to the following rule:
I believe you already know how Π
works. The constructor El
computes the type corresponds to an instance of U
:
Note that it uses the judgment , which is defined below.
Substitution objects
open inductive infix << (Γ : Con) (Δ : Con) : Type
tighter = looser ▷
| _, • ⇒ ε
| _, Δ' ▷ A ⇒ infixr ∷ (δ : Γ << Δ') (Tm Γ (Subst A δ)) tighter =
| infix ∘ {Θ : Con} (Θ << Δ) (Γ << Θ) tighter = ∷
| π₁ {A : Ty Δ} (Γ << Δ ▷ A)
| id (Γ = Δ)
| idl• {s : Γ << Δ} : id refl ∘ s = s
| idr• {s : Γ << Δ} : s ∘ id refl = s
| ass {Θ Ξ : Con} {ν : Γ << Ξ} {δ : Ξ << Θ} {σ : Θ << Δ}
: (σ ∘ δ) ∘ ν = σ ∘ (δ ∘ ν)
| π₁β {δ : Γ << Δ} {A : Ty Δ} (t : Tm Γ (Subst A δ)) : π₁ (δ ∷ t) = δ
| _, _ ▷ _ ⇒ πη {δ : Γ << Δ} : (π₁ δ ∷ π₂ δ) = δ
| _, Δ' ▷ A ⇒ ∷∘ {Θ : Con} {σ : Θ << Δ'} {δ : Γ << Θ} {t : Tm Θ (Subst A σ)}
: (σ ∷ t) ∘ δ = (σ ∘ δ) ∷ transport (Tm _) SubAss (sub t)
| _, • ⇒ εη {δ : Γ << •} : δ = ε
An instance of type Γ << Δ
corresponds to the in the substitution typing .
Terms
open inductive Tm (Γ : Con) (Ty Γ) : Type
| _, Π A B ⇒ λ (Tm (Γ ▷ A) B)
| Γ' ▷ A, B ⇒ app (Tm Γ' (Π A B))
| _, Subst A δ ⇒ sub (Tm _ A)
| _, Subst A (π₁ δ) ⇒ π₂ (Γ << _ ▷ A)
| _, Subst B δ as A ⇒ π₂β {Δ : Con} (t : Tm Γ A)
: transport (Tm _) (pmap (Subst B) (π₁β t)) (π₂ (δ ∷ t)) = t
| _ ▷ _, A ⇒ Πβ (f : Tm Γ A) : app (λ f) = f
| _, Π _ _ as A ⇒ Πη (f : Tm Γ A) : λ (app f) = f
| _, Π A B ⇒ subλ {Δ : Con} {σ : Γ << Δ} {A' : Ty Δ} {B' : Ty (Δ ▷ A')}
(fording : Π (Subst A' σ) (Subst B' _) = Π A B) {t : Tm (Δ ▷ A') B'}
: let ford := transport (Tm _) fording
in ford (transport (Tm _) (SubΠ σ) (sub (λ t)))
= ford (λ (sub t))
An instance of type Tm Γ A
corresponds to the in the judgment .